Neutralization Titrations Questions and Problcims

Assistant Lecturer
Sahar Mohammed Shakir
Assistant Lecturer
Rana Adel Kamoon
Assistant Lecturer
Mohammed Abdul-Amir

Q1. Why are the standard reagents used in neutralization titrations generally strong acids and strong bases rather than weak acids and weak bases?

Q2. Which solute would provide the sharper end point in a titration with $0.10 \mathrm{~N} \mathbf{H C l}$:

$$
\begin{aligned}
& \mathrm{a}-0.10 \mathrm{~N} \text { of } \mathrm{NaOH} . \\
& \mathrm{b}-0.10 \mathrm{~N} \text { of } \mathrm{Na}_{2} \mathrm{CO}_{3} \\
& \mathrm{c}-0.10 \mathrm{~N} \text { of } \mathrm{NaHCO}_{3}
\end{aligned}
$$

Q3. Which solute would provide the sharper E.p. in a titration with $0.10 \mathrm{~N} \mathbf{N a O H}$:

$$
\begin{aligned}
& \text { a- } 0.10 \mathrm{~N} \mathrm{HCl}_{\mathrm{H}} \\
& \text { b- } 0.10 \mathrm{NCH}_{3} \mathrm{COOH} . \\
& \text { c- } 0.10 \mathrm{~N} \mathrm{H}_{2} \mathrm{CO}_{3} .
\end{aligned}
$$

Q4. What is the mass of :

$$
\begin{aligned}
& \text { a- } 0.32 \mathrm{~mol} \text { of } \mathrm{HCl} ? \\
& \mathrm{~b}-0.2 \mathrm{~mol} \text { of } \mathrm{NaOH} ? \\
& \mathrm{c}-0.6 \mathrm{~mol} \text { of } \mathrm{Na}_{2} \mathrm{CO}_{3} ? \\
& \text { d- } 1.0 \mathrm{~mol} \text { of } \mathrm{CH}_{3} \mathrm{COOH} ?
\end{aligned}
$$

Q5. What is the mass of:
a- 0.32 equivalents of HCl ? b- 0.2 equivalents of NaOH ? c- 0.6 equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}$? d- 1.0 equivalents of $\mathrm{CH}_{3} \mathrm{COOH}$?

Q6. What is the mass of solute in: a- 250 ml of 0.23 M of $\mathrm{Na}_{2} \mathrm{CO}_{3}$? b- 250 ml of 0.23 N of $\mathrm{Na}_{2} \mathrm{CO}_{3}$? c- 250 ml of 0.23 M of NaOH ? d- 250 ml of 0.23 N of NaOH ?

Q7. Calculate the molar concentration of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in aqueous solution containing 4 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}(106 \mathrm{~g} / \mathrm{mol})$ in 1.0 L of solution.

Q8. Describe the preparation of 100 ml of 6.0 N HCl from a concentrated solution that has a specific gravity of 1.19 and is $37.2 \%(\mathrm{w} / \mathrm{w}) \mathrm{HCl}(36.5 \mathrm{~g} / \mathrm{mol})$.

Q9. What is the normality of an aqueous solution that is $3.00 \% \mathrm{HCl}$ by mass and has a density of $1.015 \mathrm{~g} / \mathrm{ml}$?

Q10. Calculate the normality of a solution that contains 2.00% (w / w) NaOH and a density of $1.022 \mathrm{~g} / \mathrm{ml}$.

Q11. Calculate the normality of a solution prepared by :
a- Dissolving 36.5 g of NaOH in water and diluted to 500 ml .
b- Diluting 25 ml of the solution in (a) to 250 ml .
c- Diluting 10 ml of the solution in (b) to 1 L .
Q12. Suppose three possible causes that can account for titration errors .

Q13: Calculate the normality of $\mathrm{HCl} \operatorname{sln}$. If 30 ml were needed to titrate a 0.2 g sample of primary standard $\mathrm{Na}_{2} \mathbf{C O}_{3}$?

Q14: A solution contains 3.0 g of NaOH in each 15 ml ,
a- What is the normality of the solution? b- How many milliliters of 3.10 N acetic acid will be equivalent to 25.0 ml of the above NaOH solution?

Q15: A bottle of glacial acetic acid has the following Information on it's label, purity of 99.5% \& specific gravity 1.05 a- Calculate the normality of this solution. b- How could you prepare 500 ml of 0.1 N of HAc sln. from the concentrated reagent?

Assistant Lecturer
Sahar Mohammed Shakir Assistant Lecturer
Rana Adel Kamoon Assistant Lecturer
Mohammed Abdul-Amir

